z-logo
Premium
The A‐Type Potassium Channel Kv4.2 Is a Substrate for the Mitogen‐Activated Protein Kinase ERK
Author(s) -
Adams J. Paige,
Anderson Anne E.,
Varga Andrew W.,
Dineley Kelly T.,
Cook Richard G.,
Pfaffinger Paul J.,
Sweatt J. David
Publication year - 2000
Publication title -
journal of neurochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.75
H-Index - 229
eISSN - 1471-4159
pISSN - 0022-3042
DOI - 10.1046/j.1471-4159.2000.0752277.x
Subject(s) - mapk/erk pathway , protein kinase a , phosphorylation , microbiology and biotechnology , potassium channel , kinase , biology , synaptic plasticity , protein subunit , chemistry , neuroscience , biophysics , biochemistry , receptor , gene
Abstract: The mitogen‐activated protein kinase ERK has recentlybecome a focus of studies of synaptic plasticity and learning and memory. Dueto the prominent role of potassium channels in regulating the electricalproperties of membranes, modulation of these channels by ERK could play animportant role in mediating learning‐related synaptic plasticity in the CNS.Kv4.2 is a Shal‐type potassium channel that passes an A‐type current and islocalized to dendrites and cell bodies in the hippocampus. The sequence ofKv4.2 contains several consensus sites for ERK phosphorylation. In the presentstudies, we tested the hypothesis that Kv4.2 is an ERK substrate. Wedetermined that the Kv4.2 C‐terminal cytoplasmic domain is an effective ERK2substrate, and that it is phosphorylated at three sites: Thr 602 ,Thr 607 , and Ser 616 . We used this information to developantibodies that recognize Kv4.2 phosphorylated by ERK2. One of ourphospho‐site‐selective antibodies was generated using a triply phosphorylatedpeptide as the antigen. We determined that this antibody recognizesERK‐phosphorylated Kv4.2 in COS‐7 cells transfected with Kv4.2 and nativeERK‐phosphorylated Kv4.2 in the rat hippocampus. These observations indicatethat Kv4.2 is a substrate for ERK in vitro and in vivo, and suggest that ERKmay regulate potassium‐channel function by direct phosphorylation of thepore‐forming α subunit.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here