z-logo
Premium
Correlation Between Caspase‐3 Activation and Three Different Markers of DNA Damage in Neonatal Cerebral Hypoxia‐Ischemia
Author(s) -
Zhu Changlian,
Wang Xiaoyang,
Hagberg Henrik,
Blomgren Klas
Publication year - 2000
Publication title -
journal of neurochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.75
H-Index - 229
eISSN - 1471-4159
pISSN - 0022-3042
DOI - 10.1046/j.1471-4159.2000.0750819.x
Subject(s) - tunel assay , colocalization , biology , terminal deoxynucleotidyl transferase , microbiology and biotechnology , caspase 3 , dna fragmentation , caspase , apoptosis , biochemistry , programmed cell death
Caspase‐3 has been identified as a key protease that, by targeting a limited number of proteins, can disrupt essential homeostatic processes and initiate an orderly disassembly of cells, including degradation of genomic DNA. We demonstrate the usefulness of an antibody specific for activated caspase‐3 in a model of neonatal rat hypoxia‐ischemia (Hl) and correlate the spatial and temporal activation of caspase‐3 with three different markers of DNA damage and with the loss of a neuronal marker [microtubule‐associated protein 2 (MAP 2)]. An oligonucleotide hairpin probe (HPP) with one base overhang in the 3′ end displayed a close colocalization with caspase‐3 activation at 3 h post‐Hl, whereas terminal deoxynucleotidyl transferase‐mediated dUTP nick end‐labeling (TUNEL) appeared later (24 h post‐Hl). A monoclonal antibody against single‐stranded DNA appeared to stain an entirely different population of cells, not positive for active caspase‐3, HPP, or TUNEL at this time point. After 24 h of reperfusion, however, when cellular injury is extensive, all markers stained a large number of cells with a high degree of colocalization, and all markers delineated regions with loss of MAP 2. We conclude that the HPP shows the best correlation with pathological caspase‐3 activation in this model.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here