z-logo
Premium
Oxidative DNA Damage in the Parkinsonian Brain: An Apparent Selective Increase in 8‐Hydroxyguanine Levels in Substantia Nigra
Author(s) -
Alam Z. I.,
Jenner A.,
Daniel S. E.,
Lees A. J.,
Cairns N.,
Marsden C. D.,
Jenner P.,
Halliwell B.
Publication year - 1997
Publication title -
journal of neurochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.75
H-Index - 229
eISSN - 1471-4159
pISSN - 0022-3042
DOI - 10.1046/j.1471-4159.1997.69031196.x
Subject(s) - substantia nigra , chemistry , dna oxidation , guanine , dna damage , oxidative phosphorylation , deoxyguanosine , oxidative stress , biochemistry , 8 hydroxy 2' deoxyguanosine , radical , oxidative deamination , parkinson's disease , dna , medicine , nucleotide , disease , enzyme , gene
Oxidative damage has been implicated in the pathology of Parkinson's disease (PD), e.g., rises in the level of the DNA damage product, 8‐hydroxy‐2′‐deoxyguanosine, have been reported. However, many other products result from oxidative DNA damage, and the pattern of products can be diagnostic of the oxidizing species. Gas chromatography/mass spectrometry was used to examine products of oxidation and deamination of all four DNA bases in control and PD brains. Products were detected in all brain regions examined, both normal and PD. Analysis showed that levels of 8‐hydroxyguanine (8‐OHG) tended to be elevated and levels of 2,6‐diamino‐4‐hydroxy‐5‐formamidopyrimidine (FAPy guanine) tended to be decreased in PD. The most striking difference was a rise in 8‐OHG in PD substantia nigra ( p = 0.0002); rises in other base oxidation/deamination products were not evident, showing that elevation in 8‐OHG is unlikely to be due to peroxynitrite (ONOO − ) or hydroxyl radicals (OH • ), or to be a prooxidant effect of treatment with l ‐Dopa. However, some or all of the rise in 8‐OHG could be due to a change in 8‐OHG/FAPy guanine ratios rather than to an increase in total oxidative guanine damage.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here