z-logo
Premium
Tansley Review No. 108
Author(s) -
BLATT MICHAEL R.,
LEYMAN BARBARA,
GEELEN DANNY
Publication year - 1999
Publication title -
new phytologist
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.742
H-Index - 244
eISSN - 1469-8137
pISSN - 0028-646X
DOI - 10.1046/j.1469-8137.1999.00546.x
Subject(s) - secretory vesicle , vesicle , secretion , vesicle fusion , biology , secretory pathway , secretory protein , microbiology and biotechnology , computational biology , exocytosis , biochemistry , synaptic vesicle , membrane , golgi apparatus , endoplasmic reticulum
Eukaryotic cells share a set of secretory pathways for the flux of membrane and protein material. In 1993, ideas about the functioning of three major proteins of the neurosecretory complex were consolidated in the SNARE hypothesis, which proposed that the interaction of these proteins provides both the specificity for vesicle targeting and the molecular machinery for fusion between vesicle and target membranes. Subsequetly, the organization, molecular mechanics and control of vesicle trafficking have become topics of intense research, and the hypothesis has evolved to accommodate new discoveries from the analysis of secretion in yeast and mammals. It is likely to be challenged again as more information comes to light about secretory processes in plants. New tools for measuring and manipulating vesicle traffic and secretion are now being used, drawing on in vivo fluorescence and capacitance recording as well as genetic engineering. These new technologies have already begun to yield details wholly unexpected from past studies. Here we focus on recent findings relating to the mechanisms of vesicle trafficking and the background to these developments, highlighting both current understanding of the molecular events of secretion and the gaps therein, as well as discussing emerging themes from work with plants.contentsSummary 389 I. introduction 389 II. 1. The SNARE hypothesis 393 III. vesicle trafficking in plants 402 IV. regulation of vesicle trafficking in plant cells 406 V. conclusion 410Acknowledgements 411References 411

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here