Premium
Profiles of photosynthetic oxygen‐evolution within leaves of Spinacia oleracea
Author(s) -
HAN T.,
VOGELMANN T.,
NISHIO J.
Publication year - 1999
Publication title -
new phytologist
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.742
H-Index - 244
eISSN - 1469-8137
pISSN - 0028-646X
DOI - 10.1046/j.1469-8137.1999.00439.x
Subject(s) - spinacia , photosynthesis , spinach , botany , oxygen , photosynthetic capacity , oxygen evolution , biology , chemistry , horticulture , chloroplast , biochemistry , organic chemistry , electrode , gene , electrochemistry
Oxygen evolution was measured from mesophyll tissues in spinach leaves using a photoacoustic technique. The photosynthetic capacity of individual cell layers was measured by directing microscopic beams of light, 40 μm wide, to cells exposed within a leaf cross section. The resulting profile for oxygen‐evolution potential was relatively flat, indicating a uniform capacity for photosynthesis in leaf mesophyll tissues. Two experimental approaches were used to estimate the photosynthetic performance of individual mesophyll cell layers when white light was applied to the adaxial leaf surface. These experiments indicated that oxygen was produced relatively uniformly across the mesophyll and that oxygen evolution increased with irradiance of the white light applied to the leaf surface. The measured profiles for oxygen evolution and capacity are flatter than previous measurements of profiles of fixed carbon and estimates of profiles for absorbed light within spinach leaves.