z-logo
Premium
Effects of elevated CO 2 and soil quality on leaf gas exchange and above‐ground growth in beech–spruce model ecosystems
Author(s) -
EGLI PHILIPP,
MAURER STEFAN,
GÜNTHARDTGOERG MADELEINE S.,
KÖRNER CHRISTIAN
Publication year - 1998
Publication title -
new phytologist
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.742
H-Index - 244
eISSN - 1469-8137
pISSN - 0028-646X
DOI - 10.1046/j.1469-8137.1998.00276.x
Subject(s) - beech , fagus sylvatica , picea abies , photosynthesis , stomatal conductance , shoot , transpiration , botany , understory , fagaceae , horticulture , chemistry , agronomy , canopy , biology
Responses of leaf gas exchange and above‐ground growth of beech ( Fagus sylvatica L.) and Norway spruce ( Picea abies Karst.) to atmospheric CO 2 enrichment (374 μl l −1 vs. 590 μl l −1 ) and increased wet deposition of N (5 vs. 50 kg N ha −1 a −1 ) in combination with two natural forest soil types (‘acidic’ and ‘calcareous’) were studied in large open‐top chambers. Eight juvenile beech and spruce trees from different provenances, together with a ground cover composed of five understorey species, were established in each of 32 model ecosystems. Both beech and spruce showed sustained enhancement of photosynthesis in response to atmospheric CO 2 enrichment during the first 2 yr of treatment. Nevertheless, switching measurement CO 2 concentrations revealed partial downward adjustment of photosynthesis in trees grown in elevated CO 2 , beech generally showing more pronounced downward adjustment than spruce. The responsiveness of photosynthesis to CO 2 enrichment did not vary significantly among trees from different provenances. Stomatal conductance was reduced under elevated CO 2 in both tree species. In spruce, the radial growth of the main stem and the annual production of wood (shoot‐wood dry mass of current‐year lateral shoots), needle dry mass, and assimilation area per tree were stimulated both by CO 2 enrichment and increased N deposition, but were not significantly affected by soil type by year 2. In contrast, in beech, the radial growth of the stem and the total leaf number, foliage dry mass, and assimilation area per tree were all not significantly affected by elevated CO 2 and increased N deposition when responses of the two soil types were pooled, but were greater on calcareous than on acidic soil by year 2. However, CO 2 interacted with soil type in beech: irrespective of the N deposition rate, saplings showed growth stimulation on the calcareous soil but responded negatively to CO 2 enrichment on the acidic soil (where growth was slower). Our results suggest that complex interactions between CO 2 , species and soil quality need to be accounted for when attempting to predict forest development in a future CO 2 ‐rich world.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here