Premium
The implications of solar UV radiation exposure for fish and fisheries
Author(s) -
Zagarese Horacio E,
Williamson Craig E
Publication year - 2001
Publication title -
fish and fisheries
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.747
H-Index - 109
eISSN - 1467-2979
pISSN - 1467-2960
DOI - 10.1046/j.1467-2960.2001.00048.x
Subject(s) - oxidative stress , environmental chemistry , dna damage , reactive oxygen species , pollutant , phototoxicity , environmental science , chemistry , biology , ecology , dna , in vitro , biochemistry
Ultraviolet radiation (UVR) possesses three important properties that combine to make it a potent environmental force. These include the potential to induce damage: UVR carries more energy per photon than any other wavelength reaching the Earth’s surface. Such highly energetic photons are known to damage many biological molecules, such as DNA and proteins. In addition, they can initiate a series of redox reactions to form reactive oxygen species (ROS), which cause oxidative stress to cells and tissues. The second property is ubiquity: owing to their dependence on light, primary producers and most visual predators, such as fish, are also necessarily exposed to damaging levels of UVR. Thirdly, the combined effect of UVR and additional environmental factors may result in synergistic effects, such as the photoactivation of organic pollutants and photosensitisation. In natural environments, the concentration of dissolved organic matter (DOM) and habitat depth are the two main factors controlling the degree of UVR exposure experienced by fish. Additional factors include vegetation coverage, particulate materials in suspension, pH and hydrological characteristics, and site location (latitude, elevation). The range of potential effects on fish includes direct DNA damage resulting in embryo and larval mortality, and adult and juvenile sunburn, as well as indirect oxidative stress, phototoxicity and photosensitisation.