z-logo
Premium
Magnetic resonance imaging techniques demonstrate soft tissue damage in the diabetic foot
Author(s) -
Brash P. D.,
Foster J.,
Vennart W.,
Anthony P.,
Tooke J. E.
Publication year - 1999
Publication title -
diabetic medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.474
H-Index - 145
eISSN - 1464-5491
pISSN - 0742-3071
DOI - 10.1046/j.1464-5491.1999.00005.x
Subject(s) - medicine , atrophy , diabetic neuropathy , magnetic resonance imaging , adipose tissue , diabetes mellitus , muscle atrophy , soft tissue , peripheral neuropathy , diabetic foot , anatomy , pathology , endocrinology , radiology
Summary Aims Our objective was to assess the qualitative soft tissue changes which occur in the diabetic neuropathic foot, which may predispose to ulceration, using a specific magnetic resonance imaging (MRI) contrast sequence, magnetization transfer (MT) which produces contrast based on exchange between water bound to macromolecules (e.g. collagen) and free water (e.g. extracellular fluid). Methods The first metatarsal head of 19 diabetic neuropathic subjects and 11 diabetic non‐neuropathic controls was studied using a ‘targeted’ radiofrequency coil. Neuropathy was classified using vibration perception threshold (VPT) (< or > 25 V), cold threshold (< 1 °C or > 4 °C) and Michigan neuropathy score (< 5 or > 15). Peripheral vascular disease was excluded. Results were expressed as percentage of tissue MT activity in a cross‐sectional area. At autopsy full thickness biopsies were taken from the plantar fat pad of 10 unrelated subjects with diabetic neuropathy. Results Healthy muscle displays high MT activity, whereas adipose tissue induces little activity. Muscle MT activity was considerably reduced (75 ± 20%, 30 ± 24%, P  < 0.001) and fat pad MT activity was considerably increased in subjects with neuropathy (37 ± 17% 68 ± 21%, P  < 0.001). Muscle fibre atrophy decreases MT activity, whereas fibrous infiltration of the fat pad increases MT activity, fibro‐atrophic post‐mortem histological changes were found in the plantar fat pads of all neuropathic subjects examined ( n  = 10). Conclusions Changes in MT activity reflect qualitative structural changes which this study reveals are extensive in the diabetic neuropathic foot. Fibrotic atrophy of the plantar fat pad may affect its ability to dissipate the increased weight‐bearing forces associated with diabetic neuropathy. Diabet. Med. 16, 55–61 (1999)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here