Premium
The wing vestiture of the non‐ditrysian Lepidoptera (Insecta). Comparative morphology and phylogenetic implications
Author(s) -
Simonsen Thomas J.
Publication year - 2001
Publication title -
acta zoologica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.414
H-Index - 37
eISSN - 1463-6395
pISSN - 0001-7272
DOI - 10.1046/j.1463-6395.2001.00089.x
Subject(s) - wing , biology , lepidoptera genitalia , sister group , evolutionary biology , taxon , scale (ratio) , ridge , morphology (biology) , zoology , phylogenetic tree , paleontology , cartography , geography , genetics , clade , gene , engineering , aerospace engineering
The ultrastructure of the dorsal forewing vestiture in exemplars of all family group taxa of non‐ditrysian Lepidoptera is examined, and the evolutionary implications at family level and above are discussed. Wing‐scale terminology is reviewed. Three different types of bilayer wing‐scale covering are recognized; only a few groups have a single‐layer wing‐scale covering. The general scale arrangement is random, but a few taxa have clustered scale arrangements and scattered heteroneurans have scales arranged in transverse rows. Cross ribs are present in all taxa, but only as vestiges in eriocraniid cover scales. Ridge dimorphism is widespread in Neolepidoptera. Surprisingly, ridges and cross ribs on the adwing scale surface are of general occurrence in Neopseustidae and Hepialidae, and are even found on parts of the ground scales of many other Neolepidoptera. Morphological evidence strongly indicates that the fused wing‐scale types found in non‐Coelolepidan Lepidoptera and Neolepidoptera are independently evolved, as evidenced from the presence of vestigial perforations. Absence of perforations is not infallible evidence that a scale is solid. Microtrichia are independently reduced in a number of taxa and probably re‐evolved in at least higher nepticulids. Wing vestiture and scale characters indicate that Tischerioidea may be the sister group of Ditrysia.