
Cross‐talk between enteric pathogens and the intestine
Author(s) -
Uzzau Sergio,
Fasano Alessio
Publication year - 2000
Publication title -
cellular microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.542
H-Index - 138
eISSN - 1462-5822
pISSN - 1462-5814
DOI - 10.1046/j.1462-5822.2000.00041.x
Subject(s) - paracellular transport , biology , secretion , transcellular , vibrio cholerae , enterotoxin , microbiology and biotechnology , intestinal epithelium , intestinal mucosa , tight junction , cholera toxin , escherichia coli , epithelium , bacteria , biochemistry , gene , medicine , genetics , membrane , permeability (electromagnetism)
Enteric pathogens finely regulate the expression of virulence genes in reply to stimuli generated by the intestinal environment. This minireview focuses on recently discovered strategies developed by enteric bacteria to cause intestinal secretion through the elaboration of factors that share structure and function with specific host counterparts. Such bacterial antigens appear to interfere largely with the epithelial cell signalling that physiologically regulates the numerous and, as yet not fully elucidated, mechanisms controlling both the transcellular and the paracellular secretion pathways. Heat‐stable enterotoxins (STs) elaborated by enterotoxigenic Escherichia coli and the enteroaggregative E. coli enterotoxin (EAST1) are both typical examples of enteric toxins that activate the transcellular secretion pathway by mimicking guanylin, the endogenous modulator of cGMP signalling. Alternative strategies have been developed by Salmonella to induce intestinal secretion through the elaboration of a factor (SopB) that resembles at least two of the host cell 4‐phosphatases, enzymes that activate the Ca‐dependent transcellular secretion pathway. Finally, Vibrio cholerae has developed innovative tactics to activate the paracellular secretion pathway through the elaboration of Zonula occludens toxin (Zot), a factor that mimics a recently described physiological modulator of intercellular tight junctions.