z-logo
Premium
Predicting biodegradation
Author(s) -
Wackett Lawrence P.,
Ellis Lynda B. M.
Publication year - 1999
Publication title -
environmental microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.954
H-Index - 188
eISSN - 1462-2920
pISSN - 1462-2912
DOI - 10.1046/j.1462-2920.1999.00029.x
Subject(s) - biodegradation , biochemical engineering , biology , human health , set (abstract data type) , computer science , ecology , engineering , medicine , environmental health , programming language
Biodegradation is important for natural and industrial cycling of environmental chemicals. Industries and government regulators increasingly seek to know the fate of chemicals in the environment and thus prevent potential negative impacts on human or ecosystem health. However, millions of organic compounds are known, and most will remain unstudied with respect to biodegradation. This necessitates the development of organized biodegradation information coupled with predictive methods. Biodegradation prediction methods are being developed using the information contained in the University of Minnesota Biocatalysis/Biodegradation database. Heuristic rules are derived from compiled biodegradation information. Additional rules are generated by deconstructing compounds into a set of the 40 most common organic functional groups. The rules consist of deriving biochemically plausible catabolic reactions for each of the functional groups. More complex compounds, containing multiple functional groups, are analysed using higher order rules requiring prioritizing enzymatic attack and reactions cleaving functional groups. While biodegradation prediction, like weather prediction, will never be perfect, it can be an important tool for guiding industry, regulators and experimentalists.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here