z-logo
Premium
Neurons with distinctive firing patterns, morphology and distribution in laminae V–VII of the neonatal rat lumbar spinal cord
Author(s) -
Szûcs Péter,
Odeh Francis,
Szokol Karolina,
Antal Miklós
Publication year - 2003
Publication title -
european journal of neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.346
H-Index - 206
eISSN - 1460-9568
pISSN - 0953-816X
DOI - 10.1046/j.1460-9568.2003.02484.x
Subject(s) - spinal cord , grey matter , neuroscience , lumbar , anatomy , dorsum , lumbar spinal cord , biology , depolarization , central nervous system , white matter , medicine , biophysics , magnetic resonance imaging , radiology
It is generally accepted that neurons in the ventral spinal grey matter, a substantial proportion of which can be regarded as constituents of the spinal motor apparatus, receive and integrate synaptic inputs arising from various peripheral, spinal and supraspinal sources. Thus, a profound knowledge concerning the integrative properties of interneurons in the spinal ventral grey matter appears to be essential for a fair understanding of operational principles of spinal motor neural assemblies. Using the whole cell patch clamp configuration in a correlative physiological and morphological experimental approach, here we demonstrate that the intrinsic membrane properties of neurons vary widely in laminae V–VII of the ventral grey matter of the neonatal rat lumbar spinal cord. Based on their firing patterns in response to depolarizing current steps, we have classified the recorded neurons into four categories: ‘phasic’, ‘repetitive’, ‘single’ and ‘slow’. Neurons with firing properties characteristic of the ‘phasic’, ‘repetitive’ and ‘single’ cells have previously been reported also in the superficial and deep spinal dorsal horn, but this is the first account in the literature in which ‘slow’ neurons have been recovered and described in the spinal cord. The physiological heterogeneity in conjunction with the morphological correlation and distribution of neurons argues that different components of motor neural assemblies in the spinal ventral grey matter possess different signal processing characteristics.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here