z-logo
Premium
Recovery following peripheral destruction of olfactory neurons in young and adult mice
Author(s) -
Ducray Angélique,
Bondier JeanRobert,
Michel Germaine,
Bon Karine,
Propper Alain,
Kastner Anne
Publication year - 2002
Publication title -
european journal of neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.346
H-Index - 206
eISSN - 1460-9568
pISSN - 0953-816X
DOI - 10.1046/j.1460-9568.2002.02044.x
Subject(s) - peripheral , neuroscience , olfaction , olfactory system , psychology , biology , medicine
Olfactory neurons (ON) which are located in the olfactory epithelium are responsible of odorous molecule detection. A unique feature of these cells is their continuous replacement throughout life due to the proliferation and differentiation of local neural precursors, the basal cells. Thus, experimental destruction of all ON induces a stimulation of basal cell division followed by tissue regeneration. The fact that ON precursors display such proliferative and neurogenic activity in adults makes these cells particularly attractive as a potential tool for nervous system repair. However, basal cell proliferation and, thus, ON production, decrease in relation to age; mostly during the first months of life. Therefore, we aimed to seek whether the ability of ON precursors to yield new functional ON in regenerative conditions was consequently impaired in adult. ZnSO 4 intranasal perfusion administered to young (1 month) and adult (6 months) mice leads in a few days to total ON destruction and to hyposmia. Tissue and function restoration occurred in the following weeks in both mice groups and was preceded by a transient peak of cell division. In adults, although neurogenesis in the impaired olfactory epithelium was less efficient than in young mice, neural precursors retain their ability to provide new functional ON as indicated by the butanol detection recovery. This was achieved more rapidly than total ON regeneration , suggesting that a reduced number of reconnected ON may be sufficient for odor discrimination.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here