Premium
Long‐term spatial memory in rats with hippocampal lesions
Author(s) -
Ramos Juan M. J.
Publication year - 2000
Publication title -
european journal of neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.346
H-Index - 206
eISSN - 1460-9568
pISSN - 0953-816X
DOI - 10.1046/j.1460-9568.2000.00206.x
Subject(s) - hippocampal formation , amnesia , hippocampus , neuroscience , psychology , retrograde amnesia , spatial memory , forgetting , cognitive psychology , long term memory , memory consolidation , recall , lesion , working memory , cognition , psychiatry
In animal models of human amnesia, using lesion methods, it has been difficult to establish the role played by the hippocampus in the formation of long‐term spatial knowledge. For example, lesions sustained after acquisition have generally produced a flat retrograde amnesia for spatial information. These results have not made it possible to dissociate the participation of the hippocampus in retrieval/performance processes from its participation in consolidation/retention. The present study was designed to investigate if electrolytic hippocampal lesions made before training lead to a deficit in the long‐term retention of spatial knowledge when the rats show equal performance levels during the acquisition. Results show that lesioned rats learn a place response just as well as the control rats when, during the training, an intramaze cue orients the animal in its navigation towards the goal arm. One day after reaching criterion, lesioned and control rats remember the task perfectly during a transfer test in which the intramaze signal used previously is not present. However, 24 days later, the hippocampal animals manifest a profound deficit in the retention of the spatial information. When the spatial task learned during the acquisition phase requires only the use of a guidance strategy, control and lesioned animals show the same level of performance during the training phase and the same degree of retention during the retraining phase 24 days after criterion. Taken together, these results suggest that the hippocampus plays a crucial role in long‐term retention of allocentric spatial information.