Premium
Time‐dependent enhancement of inhibitory avoidance retention and MAPK activation by post‐training infusion of nerve growth factor into CA1 region of hippocampus of adult rats
Author(s) -
Walz Roger,
Lenz Guido,
Roesler Rafael,
Vianna Mônica M. R.,
Martins Vilma,
Brentani Ricardo,
Rodnight Richard,
Izquierdo Ivan
Publication year - 2000
Publication title -
european journal of neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.346
H-Index - 206
eISSN - 1460-9568
pISSN - 0953-816X
DOI - 10.1046/j.1460-9568.2000.00123.x
Subject(s) - hippocampus , inhibitory postsynaptic potential , nerve growth factor , neuroscience , mapk/erk pathway , psychology , anesthesia , medicine , chemistry , kinase , receptor , biochemistry
Several studies have demonstrated that chronic intracerebroventricular nerve growth factor (NGF) infusion has a beneficial effect on cognitive performance of lesioned as well as old and developing animals. Here we investigate: (i) the effect of post‐training infusion of NGF into the CA1 region of hippocampus on inhibitory avoidance (IA) retention in rats; (ii) the extension of the effect, in time and space, of NGF infusion into CA1 on the activity of mitogen‐activated protein kinase (MAPK, syn: ERK1/2, p42/p44 MAPK). NGF was bilaterally injected into the CA1 regions of the dorsal hippocampus (0.05, 0.5 or 5.0 ng diluted in 0.5 μL of saline per side) at 0, 120 or 360 min after IA training in rats. Retention testing was carried out 24 h after training. The injection of 5.0 and 0.5, but not 0.05, ng per side of NGF at 0 and 120 min after IA training enhanced IA retention. The highest dose used was ineffective when injected 360 min after training. The infusion of 0.5 μL of NGF (5.0 ng) induced a significant enhancement of MAPK activity in hippocampal microslices; this enhancement was restricted to a volume with 0.8 mm radius at 30 min after injection. The MAPK activation was still seen 180 min after NGF infusion, although this value showed only a tendency. In conclusion, localized infusion of NGF into the CA1 region enhanced MAPK activity, restricted in time and space, and enhanced IA retention in a time‐ and dose‐dependent manner.