z-logo
Premium
Hippocampal neuronal position selectivity remains fixed to room cues only in rats alternating between place navigation and beacon approach tasks
Author(s) -
Trullier O.,
Shibata R.,
Mulder A. B.,
Wiener S. I.
Publication year - 1999
Publication title -
european journal of neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.346
H-Index - 206
eISSN - 1460-9568
pISSN - 0953-816X
DOI - 10.1046/j.1460-9568.1999.00839.x
Subject(s) - hippocampal formation , task (project management) , neuroscience , hippocampus , place cell , psychology , neuropsychology , computer science , cognition , management , economics
To study the relationship between brain representations and behaviour, we recorded hippocampal neuronal activity in rats repeatedly alternating between two different tasks on a circular platform with four reward boxes along the edge. In the beacon approach task, rewards were provided only at the pair of diametrically opposite boxes that was illuminated. In the place navigation task, rewards were available only at the boxes positioned near the north‐east and south‐west corners of the room. Performance levels were high and rats rapidly reoriented to changes in lamp cues in the beacon approach task. Neuropsychological studies show that rats with hippocampal lesions readily employ beacon approach strategies, while place navigation is severely impaired. Previous studies suggested that the neurons might change their behavioural correlates as the rat performed the respective tasks. However, of 34 hippocampal ‘place cells’ recorded, all showed position selectivity fixed with respect to room cues, even in the beacon approach task where coding the position of the rat in the room was of no use for locating rewards. Whether or not hippocampal signals are actually employed for ongoing behaviour would then be decided by structures downstream from the hippocampus. If this is the case, then the ‘counterproductive’ room referred place‐related discharges in the beacon approach task would be a background representation. This would provide support for proposals of multiple memory systems underlying different types of information processing and contrasts with the popular notion that local neuronal activity levels are selectively increased to the degree that the brain region is required for the ongoing function.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here