Premium
A threshold fatigue crack closure model: Part I – model development
Author(s) -
NEWMAN J. A.,
RIDDELL W. T.,
PIASCIK R. S.
Publication year - 2003
Publication title -
fatigue and fracture of engineering materials and structures
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.887
H-Index - 84
eISSN - 1460-2695
pISSN - 8756-758X
DOI - 10.1046/j.1460-2695.2003.00660.x
Subject(s) - crack closure , closure (psychology) , crack tip opening displacement , materials science , structural engineering , cracking , plasticity , mechanics , surface finish , finite element method , crack growth resistance curve , fracture mechanics , engineering , composite material , physics , market economy , economics
A fatigue crack closure model is developed that includes the effects of, and interactions between, the three closure mechanisms most likely to occur at threshold; plasticity, roughness, and oxide. This model, herein referred to as the CROP model (for Closure, Roughness, Oxide, and Plasticity), also includes the effects of out‐of‐plane cracking and multi‐axial loading. These features make the CROP closure model uniquely suited for, but not limited to, threshold applications. Rough cracks are idealized here as two‐dimensional sawtooths, whose geometry induces mixed‐mode crack‐tip stresses. Continuum mechanics and crack‐tip dislocation concepts are combined to relate crack face displacements to crack‐tip loads. Geometric criteria are used to determine closure loads from crack‐face displacements. Finite element results, used to verify model predictions, provide critical information about the locations where crack closure occurs. The CROP model is verified with experimental data in part II of this paper.