Premium
Equivalent initial flaw size testing and analysis of transport aircraft skin splices
Author(s) -
FAWAZ S. A.
Publication year - 2003
Publication title -
fatigue and fracture of engineering materials and structures
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.887
H-Index - 84
eISSN - 1460-2695
pISSN - 8756-758X
DOI - 10.1046/j.1460-2695.2003.00637.x
Subject(s) - structural engineering , fuselage , compounding , tension (geology) , engineering , cracking , stress intensity factor , standard deviation , fracture mechanics , materials science , composite material , mathematics , statistics , ultimate tensile strength
The equivalent initial flaw size (EIFS) concept was developed nearly 30 years ago in an attempt to account for the initial quality, both manufacturing and material properties, of a structural detail prone to fatigue cracking. Widespread use of this concept has been limited due to the large amount of test data required to develop a reliable EIFS distribution. In this effort, an EIFS distribution was determined for four types of flat, production like transport aircraft fuselage skin joints loaded by remote tension. Two crack growth prediction codes, AFGROW and FASTRAN , were used to not only develop the EIFS but also to compare the crack growth algorithms in each code. The EIFS calculations are prone to compounding errors in the crack growth analysis due to the changing stress intensity factor solutions and stress fields as the crack gets longer. Thus, only including EIFS calculations for mechanically small cracks, crack lengths less than 1.27 mm, results in a mean EIFS of 18.0 μm with a standard deviation of 3.78 μm.