Premium
A review of multiaxial fatigue of weldments: experimental results, design code and critical plane approaches
Author(s) -
Bäckström M.,
Marquis G.
Publication year - 2001
Publication title -
fatigue and fracture of engineering materials and structures
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.887
H-Index - 84
eISSN - 1460-2695
pISSN - 8756-758X
DOI - 10.1046/j.1460-2695.2001.00284.x
Subject(s) - structural engineering , materials science , welding , amplitude , torsion (gastropod) , shear (geology) , composite material , engineering , optics , physics , surgery , medicine
A survey of biaxial (bending or tension and torsion) constant amplitude fatigue of welded connections is presented. Re‐analysis of 233 experimental results from eight different studies has been performed based on hot spot stresses and three potential damage parameters: maximum principal stress range; maximum shear stress range; and a modified critical plane model for welds. Of the three methods, the critical plane model was most successful in resolving the data to a single S – N line. The design curve for all toe failures based on the critical plane model was FAT 97 with a slope of 3. By excluding butt welds and including only fillet welds that failed at the weld toe, the design curve was increased to FAT 114 with a slope of 3. However, observed scatter was 70–100% larger than that observed in uniaxial loaded specimens analysed using the hot spot approach.