z-logo
Premium
Similarities of stress concentrations in contact at round punches and fatigue at notches: implications to fretting fatigue crack initiation
Author(s) -
Giannakopoulos,
Vignesh Suresh,
Chenut
Publication year - 2000
Publication title -
fatigue and fracture of engineering materials and structures
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.887
H-Index - 84
eISSN - 1460-2695
pISSN - 8756-758X
DOI - 10.1046/j.1460-2695.2000.00306.x
Subject(s) - fretting , materials science , stress intensity factor , stress concentration , structural engineering , crack closure , contact mechanics , stress (linguistics) , composite material , crack tip opening displacement , finite element method , fracture mechanics , engineering , linguistics , philosophy
A linear elastic model of the stress concentration due to contact between a rounded flat punch and a homogeneous substrate is presented, with the aim of investigating fretting fatigue crack initiation in contacting parts of vibrating structures including turbine engines. The asymptotic forms for the stress fields in the vicinity of a rounded punch‐on‐flat substrate are derived for both normal and tangential loading, using both analytical and finite element methods. Under the action of the normal load, P , the ensuing contact is of width 2 b which includes an initial flat part of width 2 a . The asymptotic stress fields for the sharply rounded flat punch contact have certain similarities with the asymptotic stress fields around the tip of a blunt crack. The analysis showed that the maximum tensile stress, which occurs at the contact boundary due to tangential load Q , is proportional to a mode II stress intensity factor of a sharp punch divided by the square root of the additional contact length due to the roundness of the punch, Q /(√( b  −  a )√ π b ). The fretting fatigue crack initiation can then be investigated by relating the maximum tensile stress with the fatigue endurance stress. The result is analogous to that of Barsom and McNicol where the notched fatigue endurance stress was correlated with the stress intensity factor and the square root of the notch‐tip radius. The proposed methodology establishes a ‘notch analogue’ by making a connection between fretting fatigue at a rounded punch/flat contact and crack initiation at a notch tip and uses fracture mechanics concepts. Conditions of validity of the present model are established both to avoid yielding and to account for the finite thickness of the substrate. The predictions of the model are compared with fretting fatigue experiments on Ti–6Al–4V and shown to be in good agreement.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here