Premium
Genetic variation in the life‐history traits of Epiphyas postvittana : population structure and local adaptation
Author(s) -
Gu Hainan,
Danthanarayana Wijesiri
Publication year - 2000
Publication title -
austral ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.688
H-Index - 87
eISSN - 1442-9993
pISSN - 1442-9985
DOI - 10.1046/j.1442-9993.2000.01051.x
Subject(s) - biology , heritability , population , genetic variation , fecundity , genetic correlation , genetic variability , zoology , ecology , genetic divergence , adaptation (eye) , inbreeding , life history theory , reproduction , evolutionary biology , genetic diversity , life history , demography , genotype , genetics , gene , neuroscience , sociology
The light brown apple moth, Epiphyas postvittana (Walker) shows high intraspecific variability in morphological, physiological, demographic and behavioural characters. To gain insight into the extent of adaptation and evolutionary changes in response to environmental heterogeneity in this species, quantitative genetic analyses of life‐history variation were conducted for two natural populations under two thermal conditions (23°C and 28°C). Paternal half‐sib heritability and genetic correlation in six life‐history traits (i.e. development time, adult body weight, adult lifespan, age at first reproduction, the number of eggs laid during the first 5 days after emergence, and total fecundity) were compared. Significant heritabilities were shown consistently in development time; this is also true for adult body weight, except for the Canberra population at 23°C. However, neither population differences nor the effect of temperature were statistically detectable for any of these heritabilities, confirming the genetically determined flexibility. Positive genetic correlations between development time and adult body weight, and negative genetic correlations between the number of eggs laid during the first 5 days and adult lifespan were present for these populations at both temperatures, indicating the presence of genetic constraints. Pairwise comparisons of genetic correlations revealed the heterogeneity of the two populations and across temperatures. These results suggest that the structure of genetic covariance might have changed significantly during the divergence of natural populations and in response to the alteration of environmental conditions in E. postvittana .