Premium
Genetic variation in Batrachospermum helminthosum (Batrachospermales, Rhodophyta) among and within stream reaches using intersimple sequence repeat molecular markers
Author(s) -
Hall Melissa M.,
Vis Morgan L.
Publication year - 2002
Publication title -
phycological research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.438
H-Index - 44
eISSN - 1440-1835
pISSN - 1322-0829
DOI - 10.1046/j.1440-1835.2002.00269.x
Subject(s) - biology , evolutionary biology , variation (astronomy) , genetic variation , microsatellite , sequence (biology) , genetics , botany , gene , allele , astronomy , physics
SUMMARY Intersimple sequence repeat molecular markers were utilized to investigate the genetic relationship among individual gametophyte thalli of the freshwater red alga Batrachospermum helminthosum among distant stream reaches and within a stream reach. Fifteen thalli per stream reach were sampled from 11 streams throughout the known distribution in eastern North America from three locations in Ohio, and one location in Indiana, Michigan, North Carolina, Tennessee, Louisiana, Rhode Island, Massachusetts and Connecticut. The pairwise φ ST analysis showed significant genetic differences (P<0.05) among all streams. The partitioning of genetic variation was almost equal within and among streams (45% and 55%, respectively). Genetic variation among populations did not reflect geographic distance, suggesting that long distance dispersal may be important in the distribution of this alga. Fifty‐eight individuals from Five Mile Creek, Ohio, were investigated from three distinct segments of the stream (upstream, middle and downstream) to examine small‐scale genetic variation within a stream reach. A much higher proportion of genetic variation was observed within a stream segment (79%) than among the three segments (21%). Among these stream segments within Five Mile Creek, the individuals were variously related, with genetic similarity and spatial distance uncorrelated. A similar result was obtained among individuals within other stream reaches, suggesting that genetic structure within a stream reach may be more complex than just reproduction among closely located individuals.