z-logo
Premium
Red rot resistance in interspecific protoplast fusion product progeny of Porphyra yezoensis and P. tenuipedalis (Bangiales, Rhodophyta)
Author(s) -
Uppalapati Srinivasa Rao,
Fujita Yuji
Publication year - 2000
Publication title -
phycological research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.438
H-Index - 44
eISSN - 1440-1835
pISSN - 1322-0829
DOI - 10.1046/j.1440-1835.2000.00212.x
Subject(s) - biology , protoplast , interspecific competition , botany , porphyra , interspecific hybridization , hybrid , algae
SUMMARY Nine primary regenerants were recovered by interspecific protoplast fusion of Porphyra yezoensis Ueda T‐14 (Py) (cultivated Porphyra ) and Porphyra tenuipedalis Miura (Pt). This combination is difficult to achieve with conventional sexual hybridization, yet is important in that non‐cultivated P. tenuipedalis is partially resistant (PR) to red rot disease, caused by the microbial pathogen, Pythium porphyrae Takahashi et Sasaki. Out of the nine primary regenerants, two strains (Py‐Pt‐4 and Py‐Pt‐7) were like the parent, P. tenuipedalis , while the rest were like the other cultivated parent P. yezoensis T‐14 in their life cycle. Red rot resistance was assessed in parents and interspecific fusion product progeny (FPP) by exposing the foliose thalli to equivalent infection and measuring two parameters of the host‐pathogen interactions: supported fungal biomass and amount of disease produced. Intermediate resistance between P. yezoensis T‐14 (1.00) and P. tenuipedalis (0.13) was observed in two of the Py‐type FPP, Py‐Pt‐2F 2 (0.25) and Py‐Pt‐5F 2 (0.23). Stable inheritance of resistance was observed through two subsequent generations. The morphologic and reproductive characteristics of the regenerated foliose thalli, and nature of host‐pathogen interactions were used to further verify the hybrid origin of the FPP. Host‐pathogen interactions were followed using epi‐fluorescence and scanning electron microscopy (SEM). The zoospores encysted at higher rates on the susceptible cultivated parent (P. yezoensis T‐14) germinated immediately and the short germ tubes formed appres‐soria and penetrated the algal cells near the site of encystment. While on the PR parental (P. tenuipedalis ) and partially resistant FPP (PRFPP) progeny (Py‐Pt‐2F 2 and Py‐Pt‐5F 2 ) the low rate of zoospore encystment was followed by cyst germination, but only a few of the germ tubes formed appressoria and penetrated the thallus surface. Long germ tubes (with no appressoria) were seen growing on the thallus surface without host penetration. The minimal rate of encystment concomitant with low rate of appressorium formation on the PR parent and PRFPP was observed as the major factor responsible for the partial resistance in these thalli.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here