Premium
Thermal structure and paleo‐heat flow in the Shimanto accretionary prism, Southwest Japan
Author(s) -
Sakaguchi Arito
Publication year - 1999
Publication title -
island arc
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.554
H-Index - 58
eISSN - 1440-1738
pISSN - 1038-4871
DOI - 10.1046/j.1440-1738.1999.00246.x
Subject(s) - geology , subduction , cretaceous , accretionary wedge , ridge , paleontology , radiometric dating , thermal , petrology , geochemistry , seismology , tectonics , thermodynamics , physics
Thermal structural analysis and paleo‐heat flow estimation provide clues to understanding the thermal evolution of the accretionary complex. The thermal structure and heat flow in the Jurassic Chichibu and Cretaceous to Tertiary Shimanto accretionary complex, Southwest Japan, have been investigated by vitrinite reflectance measurement and fluid inclusion analysis. As a result, the local and multistage metamorphisms were recognized as follows. First, the Tertiary complex around the Miocene Ashizuri granite underwent exposure to extra‐high temperatures. Second, the Okitsu Melange underwent exposure to higher temperatures than the surrounding strata and was formed concurrently with the Kula‐Pacific ridge subduction beneath the Japanese Islands in the Eocene. Finally, the thermal structure of most of the Cretaceous and southern Jurassic complexes is independent of the geologic structure, indicating that these areas suffered thermal overprint. Regional radiometric dating studies show that most of the Cretaceous Shimanto complex was heated in the Eocene; the thermal overprint might have occurred as a result of ridge subduction. The heat flow during peak heating was estimated to be 95–120 mW/m 2 except for the Cretaceous Okitsu melange and the Cretaceous Nonokawa formation, north of the Okitsu Melange; a much higher value of heat flow of ~200 mW/m 2 was estimated in the Okitsu Melange. An estimation of heat flow failed for the non‐okawa formation because thermal equilibrium between the fluid and rocks has not yet been reached. It is probable that the southern strata underwent a higher heat flow. Such a trenchward increase in heat flow resembles the present situation of the Nankai Trough, although the heat flow in the Eocene was much higher.