Premium
The color of noise and the evolution of dispersal
Author(s) -
Travis Justin M. J.
Publication year - 2001
Publication title -
ecological research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.628
H-Index - 68
eISSN - 1440-1703
pISSN - 0912-3814
DOI - 10.1046/j.1440-1703.2001.00381.x
Subject(s) - biological dispersal , ecology , noise (video) , spatial ecology , spatial heterogeneity , biology , computer science , population , artificial intelligence , demography , sociology , image (mathematics)
The process of dispersal is vital for the long‐term persistence of all species and hence is a ubiquitous characteristic of living organisms. A present challenge is to increase our understanding of the factors that govern the dispersal rate of individuals. Here I extend previous work by incorporating both spatial and temporal heterogeneity in terms of patch quality into a spatially explicit lattice model. The spatial heterogeneity is modeled as a two‐dimensional fractal landscape, while temporal heterogeneity is included by using one‐dimensional noise. It was found that the color of both the spatial and temporal variability influences the rate of dispersal selected as reddening of the temporal noise leads to a reduction in dispersal, while reddening of spatial variability results in an increase in the dispersal rate. These results demonstrate that the color of environmental noise should be considered in future studies looking at the evolution of life history characteristics.