z-logo
Premium
Signals from primary mesenchyme cells regulate endoderm differentiation in the sea urchin embryo
Author(s) -
Hamada Mayuko,
Kiyomoto Masato
Publication year - 2003
Publication title -
development, growth and differentiation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 66
eISSN - 1440-169X
pISSN - 0012-1592
DOI - 10.1046/j.1440-169x.2003.00702.x
Subject(s) - mesenchyme , endoderm , ingression , microbiology and biotechnology , hemicentrotus , sea urchin , embryo , mesoderm , biology , cellular differentiation , gastrulation , embryonic stem cell , embryogenesis , genetics , gene
Primary mesenchyme cells (PMC), the skeletogenic cells derived from the micromeres of the sea urchin embryo, are involved in the differentiation of the gut. When PMC were deleted from the mesenchyme blastula, both formation of the constrictions in the gut and expression of endoderm‐specific alkaline phosphatase were significantly delayed. Therefore, the correct timing of gut differentiation depends on the existence of PMC, probably via a type of promotive signal. To date, the only role of PMC in other tissue differentiation has been a suppressive signal for the conversion of secondary mesenchyme cells (SMC) into skeletogenic cells. The present experiments using PMC ablation and transplantation showed that both signaling processes occurred in the same short period during gastrulation, but the embryos kept their competence for gut differentiation until a later stage. Further investigations indicated that conversion of SMC did not cause delay in gut differentiation and that SMC did not mediate the PMC signal to the endoderm. Therefore, the effect of PMC on gut differentiation could be a new role that is independent of the suppressive effect for SMC conversion.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here