Premium
Changes in the activities of protein phosphatase type 1 and type 2A in sea urchin embryos during early development
Author(s) -
Kawamoto Manabu,
Fujiwara Akiko,
Yasumasu Ikuo
Publication year - 2000
Publication title -
development, growth and differentiation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 66
eISSN - 1440-169X
pISSN - 0012-1592
DOI - 10.1046/j.1440-169x.2000.00515.x
Subject(s) - protein phosphatase 2 , protein kinase a , biology , casein kinase 1 , phosphatase , microbiology and biotechnology , kinase , casein kinase 2 , embryo , mitogen activated protein kinase kinase , phosphorylation , biochemistry
In the eggs and embryos of sea urchins, the activity of protein phosphatase type 2A (PP2A) increased during the developmental period between fertilization and the morula stage, decreased after the prehatching blastula stage and increased again after hatching. The PP2A activity changed keeping pace with alteration to the activities of cAMP‐dependent protein kinase (A kinase), Ca 2+ /calmodulin‐dependent protein kinase (CaM kinase) and casein kinase. Probably, PP2A contributes to the quick turning off of cellular signals because of protein phosphorylation. The activity of protein phosphatase type 1 (PP1) was not detectable up to the morula stage and appreciably increased thereafter. In the isolated nucleus fraction, specific activities of PP1 and PP2A were higher than in whole embryos at all stages in early development. Exponential increase in the number of nuclei because of egg cleavage probably makes PP1 activity detectable in whole embryos after the morula stage. In isolated nuclei, the activities of PP1 and PP2A appreciably decreased after hatching, whereas the activities of A kinase, Ca 2+ /phospholipid‐dependent protein kinase (C kinase) and CaM kinase, as well as casein kinase, became higher. In nuclei, cellular signals caused by protein phosphorylation after hatching do not seem to be turned off by these protein kinases so quickly as before hatching. The PP1 and PP2A in nuclei also seem to contribute to the elimination of signal noise.