z-logo
Premium
Ion channel formation and membrane‐linked pathologies of misfolded hydrophobic proteins: The role of dangerous unchaperoned molecules
Author(s) -
Kourie Joseph I,
Henry Christine L
Publication year - 2002
Publication title -
clinical and experimental pharmacology and physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.752
H-Index - 103
eISSN - 1440-1681
pISSN - 0305-1870
DOI - 10.1046/j.1440-1681.2002.03737.x
Subject(s) - chemistry , membrane protein , membrane , peripheral membrane protein , amyloid disease , cell membrane , biophysics , amyloid (mycology) , protein aggregation , hydrophobic effect , ion channel , biochemistry , microbiology and biotechnology , integral membrane protein , biology , receptor , amyloid fibril , amyloid β , medicine , inorganic chemistry , disease , pathology
Summary 1. Protein–membrane interaction includes the interaction of proteins with intrinsic receptors and ion transport pathways and with membrane lipids. Several hypothetical interaction models have been reported for peptide‐induced membrane destabilization, including hydrophobic clustering, electrostatic interaction, electrostatic followed by hydrophobic interaction, wedge × type incorporation and hydrophobic mismatch. 2. The present review focuses on the hypothesis of protein interaction with lipid membranes of those unchaperoned positively charged and misfolded proteins that have hydrophobic regions. We advance the hypothesis that protein misfolding that leads to the exposure of hydrophobic regions of proteins renders them potentially cytotoxic. Such proteins include prion, amyloid β protein (AβP), amylin, calcitonin, serum amyloid and C‐type natriuretic peptides. These proteins have the ability to interact with lipid membranes, thereby inducing membrane damage and cell malfunction. 3. We propose that the most significant mechanism of membrane damage induced by hydrophobic misfolded proteins is mediated via the formation of ion channels. The hydrophobicity based toxicity of several proteins linked to neurodegenerative pathologies is similar to those observed for antibacterial toxins and viral proteins. 4. It is hypothesized that the membrane damage induced by amyloids, antibacterial toxins and viral proteins represents a common mechanism for cell malfunction, which underlies the associated pathologies and cytotoxicity of such proteins.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here