Premium
A microsatellite marker linked to leaf rust resistance transferred from Aegilops triuncialis into hexaploid wheat
Author(s) -
AghaeeSarbarzeh M.,
Singh Harjit,
Dhaliwal H. S.
Publication year - 2001
Publication title -
plant breeding
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.583
H-Index - 71
eISSN - 1439-0523
pISSN - 0179-9541
DOI - 10.1046/j.1439-0523.2001.00598.x
Subject(s) - biology , rust (programming language) , microsatellite , genetics , chromosome , common wheat , aegilops , allele , gene , genome , computer science , programming language
Aegilops triuncialis (UUCC) is an excellent source of resistance to various wheat diseases, including leaf rust. Leaf rust‐resistant derivatives from a cross of a highly susceptible Triticum aestivum cv.‘WL711’ as the recurrent parent and Ae. triuncialis Ace.3549 as the donor and with and without a pair of acrocentric chromosomes were used for molecular tagging. The use of a set of sequence tagged microsatellite (STMS) markers already mapped to different wheat chromosomes unequivocally indicated that STMS marker gwm368 of chromosome 4BS was tightly linked to the Ae. triuncialis leaf rust resistance gene transferred to wheat. The presence of the Ae. Triuncialis ‐specific STMS gwm368 homoeoallele along with the non‐polymorphic 4BS allele in the rust‐resistant derivatives with and without the acrocentric chromosome indicates that the resistance has been transferred from the acrocentric chromosome to either the A or the D genome of wheat. This alien leaf rust resistance gene has been temporarily named as LrTr.