
Chaperone and antichaperone activities of trigger factor
Author(s) -
Huang GuoChang,
Chen JiaJia,
Liu ChuanPeng,
Zhou Jun–Mei
Publication year - 2002
Publication title -
european journal of biochemistry
Language(s) - English
Resource type - Journals
eISSN - 1432-1033
pISSN - 0014-2956
DOI - 10.1046/j.1432-1033.2002.03145.x
Subject(s) - lysozyme , chaperone (clinical) , chemistry , protein aggregation , biophysics , protein folding , peptide , urea , folding (dsp implementation) , microbiology and biotechnology , biochemistry , biology , medicine , pathology , electrical engineering , engineering
Reduced denatured lysozyme tends to aggregate at neutral pH and competition between productive folding and aggregation substantially reduces the efficiency of refolding. Trigger factor, a folding catalyst and chaperone can, depending on the concentration of trigger factor and the solution conditions, cause either a substantial increase (chaperone activity) or a substantial decrease (antichaperone activity) in the recovery of native lysozyme as compared with spontaneous refolding. When trigger factor is working as a chaperone, the reactivation rates of lysozyme are decelerated and aggregation decreases with increasing trigger factor concentrations. Under conditions where antichaperone activity of trigger factor dominates, the reactivation rates of lysozyme are accelerated and aggregation is increased. Trigger factor and lysozyme were both released from the aggregates on re‐solubilization with urea indicating that trigger factor participates directly in aggregate formation and is incorporated into the aggregates. The apparently dual effect of trigger factor toward refolding of lysozyme is a consequence of the peptide binding ability and may be important in regulation of protein biosynthesis.