Premium
Mechanistic and experimental analysis of condition and reproduction in a polymorphic lizard
Author(s) -
Svensson E.I.,
Sinervo B.,
Comendant T.
Publication year - 2002
Publication title -
journal of evolutionary biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 128
eISSN - 1420-9101
pISSN - 1010-061X
DOI - 10.1046/j.1420-9101.2002.00452.x
Subject(s) - biology , trait , lizard , natural selection , trade off , mate choice , zoology , avian clutch size , sexual selection , reproductive success , reproduction , ecology , evolutionary biology , selection (genetic algorithm) , demography , population , mating , artificial intelligence , sociology , computer science , programming language
The importance of genetic and environmental variation in condition in shaping evolutionary trade‐offs have recently been subject to much theoretical discussion, but is very difficult to investigate empirically in most field‐based systems. We present the results from mechanistic experimental manipulations of reproductive investment and condition in two female colour morphs (‘orange’ and ‘yellow’) of side‐blotched lizards ( Uta stansburiana ). We investigated the interactions between throat colour morphs, condition, local social environment and female survival using path‐analysis. Using follice‐ablation experiments, we show that large clutch size has a negative effect on field survival among yellow females, and that this effect is partly mediated by immunosuppressive effects of large clutches. In orange females these effects were less pronounced, and there was a negative survival effect of strong antibody responses. Hence, we experimentally confirmed our previous findings of correlational selection between female morphotype and immunocompetence, an important condition trait. Manipulation of corticosterone revealed multiple (‘pleiotropic’) direct and indirect effects of this hormone on both condition and reproductive traits. We argue that interaction effects (e.g. between local environments and genotypes) could explain a substantial fraction of variation in condition and reproduction in natural populations. Increased attention to such interaction effects and their fitness consequences will provide novel insights in field studies of selection and reproductive allocation.