z-logo
Premium
Composite conditional likelihood for sparse clustered data
Author(s) -
Hanfelt John J.
Publication year - 2004
Publication title -
journal of the royal statistical society: series b (statistical methodology)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.523
H-Index - 137
eISSN - 1467-9868
pISSN - 1369-7412
DOI - 10.1046/j.1369-7412.2003.05300.x
Subject(s) - pairwise comparison , inference , covariate , statistics , likelihood function , binary data , mathematics , computer science , artificial intelligence , binary number , maximum likelihood , arithmetic
Summary.  Sparse clustered data arise in finely stratified genetic and epidemiologic studies and pose at least two challenges to inference. First, it is difficult to model and interpret the full joint probability of dependent discrete data, which limits the utility of full likelihood methods. Second, standard methods for clustered data, such as pairwise likelihood and the generalized estimating function approach, are unsuitable when the data are sparse owing to the presence of many nuisance parameters. We present a composite conditional likelihood for use with sparse clustered data that provides valid inferences about covariate effects on both the marginal response probabilities and the intracluster pairwise association. Our primary focus is on sparse clustered binary data, in which case the method proposed utilizes doubly discordant quadruplets drawn from each stratum to conduct inference about the intracluster pairwise odds ratios.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here