Premium
Soil metabolism of flupyrsulfuron in winter wheat crops
Author(s) -
ROUCHAUD J,
MOULARD C,
EELEN H,
BULCKE R
Publication year - 2002
Publication title -
weed research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.693
H-Index - 74
eISSN - 1365-3180
pISSN - 0043-1737
DOI - 10.1046/j.1365-3180.2002.00258.x
Subject(s) - sulfonylurea , loam , chemistry , trifluoromethyl , amine gas treating , agronomy , soil water , crop , hydrolysis , pyridine , horticulture , medicinal chemistry , biology , organic chemistry , ecology , alkyl , insulin , endocrinology
The sulfonylurea herbicide flupyrsulfuron was applied post‐emergence in March at the rate of 10 g a.i. ha −1 on winter wheat crops. In the 0–8 cm surface soil layer of the crops grown on sandy loam and loam soils, the flupyrsulfuron half‐life was 64 and 40 days respectively. Flupyrsulfuron and its metabolites were not detected during both crops or 1 month after crop harvest in the 8–15 and 15–20 cm soil layers. Soil degradation of flupyrsulfuron successively generated the cyclization products 1‐(4,6‐dimethoxypyrimidine‐2‐yl)‐2,4‐diketo‐7‐trifluoromethyl‐1,2,3,4‐tetrahydropyrido[2,3‐d]pyrimidine 2 and N‐(4,6‐dimethoxypyrimidine‐2‐yl)‐N‐(3‐methoxycarbonyl‐6‐trifluoromethylpyridine‐2‐yl)‐amine 3 , which were the main metabolites of flupyrsulfuron in soil. Hydrolysis of 3 successively generated N‐(4,6‐dimethoxypyrimidine‐2‐yl)‐N‐(3‐car‐ boxylic acid‐6‐trifluoromethylpyridine‐2‐yl)‐amine 4 and N‐(4‐methoxy‐6‐hydroxypyrimidine‐2‐yl)‐N‐(3‐carboxylic acid‐6‐trifluoromethylpyridine‐2‐yl)‐amine 5 . Low and temporary concentrations of 2‐sulfonamido‐3‐carbomethoxy‐6‐trifluoromethyl‐pyridine 6 and 2‐amino‐4,6‐dimethoxypyrimidine 7 were observed. Bioassays with sugarbeet as test plants indicated that 2, 3, 4, 5, 6 and 7 had herbicide activities corresponding to 100%, 80%, 75%, 75%, 75% and 15% of that of flupyrsulfuron respectively. The metabolites thus extended the herbicidal protection given by flupyrsulfuron and explain the high herbicidal protection given by the low dose of flupyrsulfuron applied. One month after the harvest of the winter wheat, no more significant residue of flupyrsulfuron or of its metabolites was detected in soil.