Premium
Characterization and expression of the phytochrome gene family in the moss Ceratodon purpureus
Author(s) -
Pasentsis Konstantinos,
Paulo Nicola,
Algarra Patricia,
Dittrich Peter,
Thümmler Fritz
Publication year - 1998
Publication title -
the plant journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.058
H-Index - 269
eISSN - 1365-313X
pISSN - 0960-7412
DOI - 10.1046/j.1365-313x.1998.00008.x
Subject(s) - art
In the moss Ceratodon purpureus, phytochrome is encoded by two different genes, CpPHY1 and CpPHY2. CpPHY2 represents a conventional type phytochrome characterized by a C-terminus homologous to the catalytic domain of bacterial sensor histidine kinases, whereas CpPHY1 represents an unique phytochrome, which carries a C-terminus homologous to the catalytic domain of eukaryotic serine/threonine/tyrosine kinases. Southern blot analysis revealed that CpPHY1 is present in different Ceratodon cultivars which were collected in Germany and in Finland, implying that CpPHY1 represents a functional and active gene in Ceratodon, but CpPHY1 homologous genes could not be detected in another moss, Physcomitrella patens, or in Arabidopsis thaliana. cDNA analysis of CpPHY1 revealed the presence of a hitherto unnoticed intron within the 3' region. This results in a change of the sequence of the 11 C-terminal amino acids from KLSSHSYLTSK to FSSYQDSYPSTEELS. CpPHY1 and CpPHY2 mRNAs appear to accumulate in a light-independent manner, with CpPHY2 being much more strongly expressed than CpPHY1. Accordingly, in crude protein extracts, CpPHY2 is clearly detectable by Western blot analysis, whereas CpPHY1 is not. Light-dependent expression of CpPHY2 can be detected at the post-transcriptional level; during a 7-day period of dark adaptation, pronounced CpPHY2 accumulation occurs. Upon transfer to white light, dark-accumulated CpPHY2 is depleted within 24 h. That depletion can be completely inhibited by the photosynthesis inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU), implying that photosynthesis is strongly involved in the adjustment of phytochrome steady-state concentrations in Ceratodon. The presence of an ORF within the 5' UTR region of CpPHY2 (uORF) encoding peptide MKEFSSTSRSLMIVGIY suggests regulation at the translational level. The uORF resides on a short intron which is excised from the 5' leader in a light-dependent manner, resulting in the formation of an alternative uORF encoding peptide MEEEEDCVP.