z-logo
Premium
Photoperiodic regulation of CS‐ACS2 , CS‐ACS4 and CS‐ERS gene expression contributes to the femaleness of cucumber flowers through diurnal ethylene production under short‐day conditions
Author(s) -
YAMASAKI S.,
FUJII N.,
TAKAHASHI H.
Publication year - 2003
Publication title -
plant, cell and environment
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.646
H-Index - 200
eISSN - 1365-3040
pISSN - 0140-7791
DOI - 10.1046/j.1365-3040.2003.00984.x
Subject(s) - plant reproductive morphology , cucumis , photoperiodism , biology , horticulture , botany , ethylene , biochemistry , catalysis
Photoperiod and the plant hormone, ethylene, modify sex expression of flowers in cucumber ( Cucumis sativus L.). In the present study, femaleness of cucumber occurred under short‐day (8 h photoperiod) conditions compared to that under long‐day (16 h photoperiod) conditions, although the effect of photoperiod was more pronounced in a monoecious than in an andromonoecious cucumber. Application of ethylene had a greater effect than photoperiod on the production of female and bisexual flowers in monoecious and andromonoecious cucumbers, respectively. Ethylene evolution and the expression of CS‐ACS2 , CS‐ACS4 and CS‐ERS genes in the shoot apices of both monoecious and andromonoecious cucumber plants had a diurnal rhythm with a peak in the middle of an 8 h or a 16 h light period. Peak ethylene evolution and expression of CS‐ACS2 was greater under short‐day conditions than under long‐day conditions in a monoecious cucumber but not in an andromonoecious one. Expression of CS‐ACS4 in monoecious and andromonoecious cucumber plants did not differ, but the level was higher under short‐day conditions compared with that under long‐day conditions. Thus, CS‐ACS2 and CS‐ACS4 might be involved in the basic diurnal rhythm of ethylene evolution in cucumber. Because exogenous ethylene increased the expression of CS‐ACS2 and CS‐ERS in monoecious cucumber possessing the M locus, but not in andromonoecious cucumber in which the function of the M locus was lost (Yamasaki et al . Plant and Cell Physiology 42, 608–619, 2001), the CS‐ACS2 gene might also be involved in ethylene production by positive feedback via regulation of M locus under short‐day conditions.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here