z-logo
Premium
The role of cytoplasmic streaming in symplastic transport
Author(s) -
PICKARD W. F.
Publication year - 2003
Publication title -
plant, cell and environment
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.646
H-Index - 200
eISSN - 1365-3040
pISSN - 0140-7791
DOI - 10.1046/j.1365-3040.2003.00845.x
Subject(s) - cytoplasm , plasmodesma , cytoplasmic streaming , microbiology and biotechnology , symplast , biology , chemistry , biophysics , biochemistry , cell wall , apoplast
The distributing of materials throughout a symplastic domain must involve at least two classes of transport steps: plasmodesmatal and cytoplasmic. To underpin the latter, the most obvious candidate mechanisms are cytoplasmic streaming and diffusion. The thesis will be here advanced that, although both candidates clearly do transport cytoplasmic entities, the cytoplasmic streaming per se is not of primary importance in symplastic transport but that its underlying molecular motor activity (of which the streaming is a readily visible consequence) is . Following brief tutorials on low Reynolds number flow, diffusion, and targeted intracytoplasmic transport, the hypothesis is broached that macromolecular and vesicular transport along actin trackways is both the cause of visible streaming and the essential metabolically driven cytoplasmic step in symplastic transport. The concluding discussion highlights four underdeveloped aspects of the active cytoplasmic step: (i) visualization of the real‐time transport of messages and metabolites; (ii) enumeration of the entities trafficked; (iii) elucidation of the routing of the messages and metabolites within the cytoplasm; and (iv) transference of the trafficked entities from cytoplasm into plasmodesmata.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here