Premium
Surface reflectance properties of Antarctic moss and their relationship to plant species, pigment composition and photosynthetic function
Author(s) -
Lovelock C. E.,
Robinson S. A.
Publication year - 2002
Publication title -
plant, cell and environment
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.646
H-Index - 200
eISSN - 1365-3040
pISSN - 0140-7791
DOI - 10.1046/j.1365-3040.2002.00916.x
Subject(s) - moss , photochemical reflectance index , pigment , photosynthesis , xanthophyll , red edge , botany , chlorophyll , reflectivity , chlorophyll a , chlorophyll fluorescence , chemistry , photosynthetic pigment , environmental chemistry , environmental science , biology , optics , canopy , physics , organic chemistry
In this study the variations in surface reflectance properties and pigment concentrations of Antarctic moss over species, sites, microtopography and with water content were investigated. It was found that species had significantly different surface reflectance properties, particularly in the region of the red edge (approximately 700 nm), but this did not correlate strongly with pigment concentrations. Surface reflectance of moss also varied in the visible region and in the characteristics of the red edge over different sites. Reflectance parameters, such as the photochemical reflectance index (PRI) and cold hard band were useful discriminators of site, microtopographic position and water content. The PRI was correlated both with the concentrations of active xanthophyll‐cycle pigments and the photosynthetic light use efficiency, F v / F m , measured using chlorophyll fluorescence. Water content of moss strongly influenced the amplitude and position of the red‐edge as well as the PRI, and may be responsible for observed differences in reflectance properties for different species and sites. All moss showed sustained high levels of photoprotective xanthophyll pigments, especially at exposed sites, indicating moss is experiencing continual high levels of photochemical stress.