Premium
Nutrient transfer from soil nematodes to plants: a direct pathway provided by the mycorrhizal mycelial network
Author(s) -
PerezMoreno J.,
Read D. J.
Publication year - 2001
Publication title -
plant, cell and environment
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.646
H-Index - 200
eISSN - 1365-3040
pISSN - 0140-7791
DOI - 10.1046/j.1365-3040.2001.00769.x
Subject(s) - paxillus involutus , nutrient , microcosm , mycelium , biology , ectomycorrhiza , botany , nutrient cycle , mycorrhiza , soil mesofauna , ectomycorrhizae , phosphorus , agronomy , symbiosis , ecology , soil biology , chemistry , soil water , bacteria , genetics , organic chemistry
A pathway for the transfer of nutrients from dead nematodes to mycorrhizal plants is described for the first time. Plants of Betula pendula were grown in transparent microcosms in the mycorrhizal (M) or non‐mycorrhizal (NM) condition, either with or without nematode necromass of known nitrogen (N) and phosphorus (P) contents as the major potential source of these elements. Plants colonized by the mycorrhizal fungus Paxillus involutus produced greater yields and had larger N and P contents in the presence of nematodes than did their NM counterparts. The symbiotic systems were shown to exploit the N and P originally contained in necromass more effectively, and to transfer the nutrients to the plants in quantities approximately double those seen in NM systems. Even so, NM plants obtained sufficient N and P from dead nematodes to enable some enhancement of growth. Our observations confirm that mycorrhizal fungi provide the potential for the recycling of nutrients contained in this quantitatively important component of the soil mesofauna and demonstrate that the symbiotic pathway is considerably more effective than that provided by saprotrophs alone. The consequences of this nutrient transfer pathway for nutrient recycling in temperate forest ecosystems are considered.