Premium
Neurotrophins and neurodegeneration
Author(s) -
Dawbarn D.,
Allen S. J.
Publication year - 2003
Publication title -
neuropathology and applied neurobiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.538
H-Index - 95
eISSN - 1365-2990
pISSN - 0305-1846
DOI - 10.1046/j.1365-2990.2003.00487.x
Subject(s) - trk receptor , neurotrophin , neuroscience , neurodegeneration , neurotrophic factors , amyotrophic lateral sclerosis , nervous system , biology , receptor , medicine , disease , genetics
There is growing evidence that reduced neurotrophic support is a significant factor in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). In this review we discuss the structure and functions of neurotrophins such as nerve growth factor, and the role of these proteins and their tyrosine kinase (Trk) receptors in the aetiology and therapy of such diseases. Neurotrophins regulate development and the maintenance of the vertebrate nervous system. In the mature nervous system they affect neuronal survival and also influence synaptic function and plasticity. The neurotrophins are able to bind to two different receptors: all bind to a common receptor p75 NTR , and each also binds to one of a family of Trk receptors. By dimerization of the Trk receptors, and subsequent transphosphorylation of the intracellular kinase domain, signalling pathways are activated. We discuss here the structure and function of the neurotrophins and how they have been, or may be, used therapeutically in AD, PD, Huntington's diseases, ALS and peripheral neuropathy. Neurotrophins are central to many aspects of nervous system function. However they have not truly fulfilled their therapeutic potential in clinical trials because of the difficulties of protein delivery and pharmacokinetics in the nervous system. With the recent elucidation of the structure of the neurotrophins bound to their receptors it will now be possible, using a combination of in silico technology and novel screening techniques, to develop small molecule mimetics with much improved pharmacotherapeutic profiles.