z-logo
Premium
The tetraspanin BcPls1 is required for appressorium‐mediated penetration of Botrytis cinerea into host plant leaves
Author(s) -
Gourgues M.,
BrunetSimon A.,
Lebrun MH.,
Levis C.
Publication year - 2004
Publication title -
molecular microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.857
H-Index - 247
eISSN - 1365-2958
pISSN - 0950-382X
DOI - 10.1046/j.1365-2958.2003.03866.x
Subject(s) - appressorium , botrytis cinerea , biology , germ tube , tetraspanin , magnaporthe grisea , conidium , conidiation , mutant , botany , microbiology and biotechnology , penetration (warfare) , cell , gene , oryza sativa , genetics , operations research , engineering
Summary Animal tetraspanins are membrane proteins controlling cell adhesion, morphology and motility. In fungi, the tetraspanin MgPls1 controls an appressorial function required for the penetration of Magnaporthe grisea into host plants. An orthologue of MgPLS1 , BcPLS1 , was identified in the necrotrophic fungal plant pathogen Botrytis cinerea . We constructed a Bcpls1::bar null mutant by targeted gene replacement. Bcpls1::bar is not pathogenic on intact plant tissues of bean, tomato or rose, but it infects wounded plant tissues. Both wild type and Bcpls1::bar differentiate appressoria on plant and artificial surfaces, a process involving an arrest of polarized growth, apex swelling and its cell wall reinforcement. Although wild‐type appressoria allowed the penetration of the fungus into the host plant within 6–12 h, no successful penetration events were observed with Bcpls1::bar , suggesting that its appressoria are not functional. An eGFP transcriptional fusion showed that BcPLS1 was specifically expressed in conidia, germ tubes and appressoria during host penetration. Our results indicate that BcPLS1 is required for the penetration of B. cinerea into intact host plants. The defect in pathogenicity of Bcpls1::bar also demonstrates that functional B. cinerea appressoria are required for a successful penetration process. As Bcpls1::bar and Mgpls1Δ::hph penetration defects are similar, fungal tetraspanins are likely to be required for an essential appressorial function widespread among fungi.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here