z-logo
Premium
How do membrane proteins sense water stress?
Author(s) -
Poolman Bert,
Blount Paul,
Folgering Joost H. A.,
Friesen Robert H. E.,
Moe Paul C.,
Heide Tiemen van der
Publication year - 2002
Publication title -
molecular microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.857
H-Index - 247
eISSN - 1365-2958
pISSN - 0950-382X
DOI - 10.1046/j.1365-2958.2002.02894.x
Subject(s) - mechanosensitive channels , turgor pressure , biology , osmotic shock , osmotic concentration , microbiology and biotechnology , osmotic pressure , biophysics , intracellular , osmoprotectant , biochemistry , ion channel , cell envelope , extracellular , amino acid , gene , receptor , escherichia coli , proline
Summary Maintenance of cell turgor is a prerequisite for almost any form of life as it provides a mechanical force for the expansion of the cell envelope. As changes in extracellular osmolality will have similar physicochemical effects on cells from all biological kingdoms, the responses to osmotic stress may be alike in all organisms. The primary response of bacteria to osmotic upshifts involves the activation of transporters, to effect the rapid accumulation of osmo‐protectants, and sensor kinases, to increase the transport and/or biosynthetic capacity for these solutes. Upon osmotic downshift, the excess of cytoplasmic solutes is released via mechanosensitive channel proteins. A number of breakthroughs in the last one or two years have led to tremendous advances in our understanding of the molecular mechanisms of osmosensing in bacteria. The possible mechanisms of osmosensing, and the actual evidence for a particular mechanism, are presented for well studied, osmoregulated transport systems, sensor kinases and mechanosensitive channel proteins. The emerging picture is that intracellular ionic solutes (or ionic strength) serve as a signal for the activation of the upshift‐activated transporters and sensor kinases. For at least one system, there is strong evidence that the signal is transduced to the protein complex via alterations in the protein–lipid interactions rather than direct sensing of ion concentration or ionic strength by the proteins. The osmotic downshift‐activated mechanosensitive channels, on the other hand, sense tension in the membrane but other factors such as hydration state of the protein may affect the equilibrium between open and closed states of the proteins.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here