z-logo
Premium
Evidence for donor strand complementation in the biogenesis of Haemophilus influenzae haemagglutinating pili
Author(s) -
Krasan Graham P.,
Sauer Frederic G.,
Cutter David,
Farley Monica M.,
Gilsdorf Janet R.,
Hultgren Scott J.,
Geme Joseph W. ST.
Publication year - 2000
Publication title -
molecular microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.857
H-Index - 247
eISSN - 1365-2958
pISSN - 0950-382X
DOI - 10.1046/j.1365-2958.2000.01816.x
Subject(s) - biology , complementation , pilus , biogenesis , haemophilus influenzae , microbiology and biotechnology , genetics , virology , virulence , bacteria , gene , phenotype
Haemophilus influenzae haemagglutinating pili are surface appendages that promote attachment to host cells and facilitate respiratory tract colonization, an essential step in the pathogenesis of disease. In contrast to other well‐characterized forms of pili, H. influenzae haemagglutinating pili are two‐stranded helical structures. Nevertheless, haemagglutinating pili are assembled by a pathway that involves a periplasmic chaperone and an outer membrane usher, analogous to the prototype pathway involved in the biogenesis of Escherichia coli P pili. In this study, we performed site‐directed mutagenesis of the H. influenzae HifB chaperone and HifA major pilus subunit at positions homologous to sites important for chaperone–subunit interactions and subunit oligomerization in P pili. Mutations at putative subunit binding pocket residues in HifB or at the penultimate tyrosine in HifA abolished formation of HifB–HifA periplasmic complexes, whereas mutations at the −14 glycine in HifA had no effect on HifB–HifA interactions but abrogated HifA oligomerization. To define further the constraints of the interaction between HifA and HifB, we examined the interchangeability of pilus gene cluster components from H. influenzae type b strain Eagan ( hifA‐hifE Eag ) and the related H. influenzae biogroup aegyptius strain F3031 ( hifA ‐ hifE F3031 ). Functional pili were assembled both with HifA Eag and the strain F3031 gene cluster and with HifA F3031 and the strain Eagan gene cluster, underscoring the flexibility of the H. influenzae chaperone/usher pathway in incorporating HifA subunits with significant sequence diversity. To gain additional insight into the interactive surfaces of HifA and HifB, we aligned HifA sequences from 20 different strains and then modelled the HifA structure based on the recently crystallized PapD–PapK complex. Analysis of the resulting structure revealed high levels of sequence conservation in regions predicted to interact with HifB, and maximal sequence diversity in regions potentially exposed on the surface of assembled pili. These results suggest broad applicability of structure–function relationships identified in studies of P pili, including the concepts of donor strand complementation and donor strand exchange. In addition, they provide insight into the structure of HifA and suggest a basis for antigenic variation in H. influenzae haemagglutinating pili.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here