z-logo
Premium
Extensive intraspecific chloroplast DNA (cpDNA) variation in the alpine Draba aizoides L. (Brassicaceae): haplotype relationships and population structure
Author(s) -
Widmer A.,
Baltisberger M.
Publication year - 1999
Publication title -
molecular ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.619
H-Index - 225
eISSN - 1365-294X
pISSN - 0962-1083
DOI - 10.1046/j.1365-294x.1999.00700.x
Subject(s) - biology , chloroplast dna , intraspecific competition , coalescent theory , evolutionary biology , phylogenetic tree , interspecific competition , introgression , ecology , genetics , gene
Chloroplast DNA (cpDNA) sequence variation is currently the most widely used tool for the inference of phylogenetic relationships among plants at all taxonomic levels. Generally, noncoding regions tend to evolve faster than coding sequences and have recently been applied to the study of phylogenetic relationships among closely related taxa. An implicit assumption of many of these studies is that intraspecific cpDNA variation is either absent or low and therefore will not interfere with the reconstruction of interspecific relationships. A survey of cpDNA sequence variation in the common alpine plant species Draba aizoides L. was undertaken to assess levels of intraspecific cpDNA sequence variation. These levels were compared to levels of interspecific sequence divergence between D. aizoides and related alpine Draba species. Intraspecific cpDNA sequence divergence was extensive in D. aizoides , and intraspecific differences were often larger than interspecific differences. cpDNA haplotype relationships were explored using a maximum parsimony approach and minimum‐spanning networks. Results from both methods were largely congruent but comparisons provided interesting insights into the presumed evolutionary history of cpDNA haplotypes. A combined effect of cpDNA introgression and complex lineage sorting was inferred to explain the pattern of cpDNA variation found in D. aizoides . Our results suggest that intraspecific cpDNA variation can be extensive and that intraspecific variation needs to be taken into account when inferring phylogenetic relationships among closely related taxa.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here