Premium
To tree or not to tree
Author(s) -
SMOUSE PETER E.
Publication year - 1998
Publication title -
molecular ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.619
H-Index - 225
eISSN - 1365-294X
pISSN - 0962-1083
DOI - 10.1046/j.1365-294x.1998.00370.x
Subject(s) - phylogenetic tree , biology , tree (set theory) , tree rearrangement , evolutionary biology , phylogenetic network , population , inference , genetics , artificial intelligence , computer science , mathematics , combinatorics , demography , sociology , gene
The practice of tracking geographical divergence along a phylogenetic tree has added an evolutionary perspective to biogeographic analysis within single species. In spite of the popularity of phylogeography, there is an emerging problem. Recurrent mutation and recombination both create homoplasy, multiple evolutionary occurrences of the same character that are identical in state but not identical by descent. Homoplasic molecular data are phylogenetically ambiguous. Converting homoplasic molecular data into a tree represents an extrapolation, and there can be myriad candidate trees among which to choose. Derivative biogeographic analyses of ‘the tree’ are analyses of that extrapolation, and the results depend on the tree chosen. I explore the informational aspects of converting a multicharacter data set into a phylogenetic tree, and then explore what happens when that tree is used for population analysis. Three conclusions follow: (i) some trees are better than others; good trees are true to the data, whereas bad trees are not; (ii) for biogeographic analysis, we should use only good trees, which yield the same biogeographic inference as the phenetic data, but little more; and (iii) the reliable biogeographic inference is inherent in the phenetic data, not the trees.