z-logo
Premium
Differences in brain gene expression between sleep and waking as revealed by mRNA differential display and cDNA microarray technology
Author(s) -
Chiara Cirelli,
Giulio Toi
Publication year - 1999
Publication title -
journal of sleep research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.297
H-Index - 117
eISSN - 1365-2869
pISSN - 0962-1105
DOI - 10.1046/j.1365-2869.1999.00008.x
Subject(s) - complementary dna , microarray , differential display , gene expression , gene , gene chip analysis , sleep (system call) , microarray analysis techniques , biology , dna microarray , messenger rna , genetics , microbiology and biotechnology , computational biology , psychology , computer science , operating system
The consequences of sleep and sleep deprivation at the molecular level are largely unexplored. Knowledge of such molecular events is essential to understand the restorative processes occurring during sleep as well as the cellular mechanisms of sleep regulation. Here we review the available data about changes in neural gene expression across different behavioural states using candidate gene approaches such as in situ hybridization and immunocytochemistry. We then describe new techniques for systematic screening of gene expression in the brain, such as subtractive hybridization, mRNA differential display, and cDNA microarray technology, outlining advantages and disadvantages of these methods. Finally, we summarize our initial results of a systematic screening of gene expression in the rat brain across behavioural states using mRNA differential display and cDNA microarray technology. The expression pattern of ≈ 7000 genes was analysed in the cerebral cortex of rats after 3 h of spontaneous sleep, 3 h of spontaneous waking, or 3 h of sleep deprivation. While the majority of transcripts were expressed at the same level among these three conditions, 14 mRNAs were modulated by sleep and waking. Six transcripts, four more expressed in waking and two more expressed in sleep, corresponded to novel genes. The eight known transcripts were all expressed at higher levels in waking than in sleep and included transcription factors and mitochondrial genes. A possible role for these known transcripts in mediating neural plasticity during waking is discussed.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here