Premium
Automated three‐dimensional analysis of particle measurements using an optical profilometer and image analysis software
Author(s) -
Bullman V.
Publication year - 2003
Publication title -
journal of microscopy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.569
H-Index - 111
eISSN - 1365-2818
pISSN - 0022-2720
DOI - 10.1046/j.1365-2818.2003.01207.x
Subject(s) - profilometer , software , pixel , image analysis , image processing , feature (linguistics) , optics , grey level , particle (ecology) , computer science , artificial intelligence , computer vision , materials science , image (mathematics) , digital image processing , physics , geology , surface finish , linguistics , philosophy , oceanography , composite material , programming language
Summary The automated collection of topographic images from an optical profilometer coupled with existing image analysis software offers the unique ability to quantify three‐dimensional particle morphology. Optional software available with most optical profilers permits automated collection of adjacent topographic images of particles dispersed onto a suitable substrate. Particles are recognized in the image as a set of continuous pixels with grey‐level values above the grey level assigned to the substrate, whereas particle height or thickness is represented in the numerical differences between these grey levels. These images are loaded into remote image analysis software where macros automate image processing, and then distinguish particles for feature analysis, including standard two‐dimensional measurements (e.g. projected area, length, width, aspect ratios) and third‐dimensional measurements (e.g. maximum height, mean height). Feature measurements from each calibrated image are automatically added to cumulative databases and exported to a commercial spreadsheet or statistical program for further data processing and presentation. An example is given that demonstrates the superiority of quantitative three‐dimensional measurements by optical profilometry and image analysis in comparison with conventional two‐dimensional measurements for the characterization of pharmaceutical powders with plate‐like particles.