z-logo
Premium
SiC f –SiBC composites: microstructural investigations of the as‐received material and creep tested composites under an oxidative environment
Author(s) -
Farizy G.,
Chermant J.L.,
Sangleboeuf J. C.,
Vicens J.
Publication year - 2003
Publication title -
journal of microscopy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.569
H-Index - 111
eISSN - 1365-2818
pISSN - 0022-2720
DOI - 10.1046/j.1365-2818.2003.01128.x
Subject(s) - composite material , materials science , creep , interphase , high resolution transmission electron microscopy , matrix (chemical analysis) , microstructure , layer (electronics) , transmission electron microscopy , biology , nanotechnology , genetics
Summary SiC f –SiBC composites fabricated by Snecma Propulsion Solide (St Médard en Jalles, France) were investigated by SEM and HRTEM in the as‐received state and after creep tests performed in air, in a temperature range 1423–1573 K, under 170 and 200 MPa. These composites are reinforced by Hi‐Nicalon fibres (Nippon Carbon). A pyrocarbon interphase was first deposited on the fibres. The matrix was then deposited on the fibrous preform by several chemical vapour infiltrations (CVI). As a result the matrix is multilayered and based on the Si–B–C ternary system. This matrix is self‐sealing: this is due to the presence of boron inducing the formation of a sealant glass if the material is heated in an oxidative environment. This glass will protect fibres and fibre/matrix interphases against oxidation. Hi‐Nicalon fibres as well as the different matrix layers were studied by HRTEM and EDX. Some investigations were carried out on the creep‐tested specimens in order to characterize modifications observed in the different constituents of the composites, particularly at the interfaces between the matrix layers and at the fibre/matrix interface. It was shown that several matrix layers crystallized during the creep tests. Moreover, a thin silica layer was observed at the pyrocarbon/matrix interfaces. Differences between the behaviour of the same type of material creep tested under neutral atmosphere are discussed.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here