z-logo
Premium
A comparative study of colloidal particles as imaging standards for microscopy
Author(s) -
Derose,
revel
Publication year - 1999
Publication title -
journal of microscopy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.569
H-Index - 111
eISSN - 1365-2818
pISSN - 0022-2720
DOI - 10.1046/j.1365-2818.1999.00490.x
Subject(s) - scanning electron microscope , sphericity , transmission electron microscopy , particle (ecology) , materials science , microscopy , scanning transmission electron microscopy , scanning confocal electron microscopy , polystyrene , particle size , nanotechnology , colloid , optics , chemistry , physics , composite material , oceanography , geology , polymer
Colloidal particles have long been used as imaging standards for electron microscopy and, more recently, for scanning probe microscopy. We have analysed gold, polystyrene and silica colloidal particles by both transmission electron microscopy and atomic/scanning force microscopy in an attempt to determine if any can be truly used as ‘standards’ of shape and/or size. From the transmission electron micrographs, we have obtained precise information of the particle circumference and mean diameter. By comparing the ratio of these to the value for π, we obtained a measure of the sphericity of the particles. We have also shadowed the particles with metal at a known angle and have analysed the shadow length to determine the particles' heights and shapes. The height information obtained from the shadow length data collected from the transmission electron micrographs was then compared with that obtained by atomic/scanning force microscopy. Our results show that cleaned (washed) silica or polystyrene particles closely approach true spheres. In the case of gold particles, height data obtained from shadow lengths analysed in transmission electron micrographs show good agreement with that obtained from the atomic/scanning force microscopy images even without washing. However, the gold particles often deviate from sphericity. Based upon both the shape and the physical properties of the colloidal particles, silica would be the best choice as a standard. We also have noticed that metal shadowing of colloidal particle samples used for atomic/scanning force microscopy offers an advantage which we call a ‘nanoscale metric’ visible in the image directly at each particle site. This information can be important if one wishes to use samples prepared from colloidal particles simply and reliably to determine the probe shape for scanning probe microscopy from image deconvolution/restoration methods or as a calibration sample.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here