Premium
Towards 1.0 Å resolution: taking advantage of dynamical scattering, and the benefits for structure retrieval
Author(s) -
Barry J. C.
Publication year - 1998
Publication title -
journal of microscopy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.569
H-Index - 111
eISSN - 1365-2818
pISSN - 0022-2720
DOI - 10.1046/j.1365-2818.1998.3020851.x
Subject(s) - high resolution transmission electron microscopy , resolution (logic) , diffraction , projection (relational algebra) , scattering , materials science , image resolution , transmission electron microscopy , chemistry , optics , physics , nanotechnology , computer science , algorithm , artificial intelligence
This paper is an exploration of the behaviour of high‐resolution transmission electron microscope (HRTEM) images at up to 1 Å resolution. The ultimate limits to HRTEM (structure) resolution and the manner in which strong scattering may lead to weak diffraction in heavy fcc metals are discussed. A resolution of 1.0 Å is somewhat better than the ultimate resolution presently achievable in a 400‐kV electron microscope. In heavy metals, such as platinum, it is found that the lattice fringe contrast is very low in the [011] projection, but that fringe contrast may be improved by imaging in the [111] projection. For atomic resolution imaging of the heavy metals in the [111] projection a resolution of 1.2 Å is required. For the study of oxygen position in high‐temperature superconducting (HTS) oxides a resolution of between 1.2 and 1.4 Å is required. At better than 1.2 Å resolution the thick crystal images in HTS oxides remain simple and are easily interpreted. At such resolution all atomic columns are separated for the HTS [010] projection and the dynamical diffraction effects improve the contrast of oxygen atoms relative to the metal atoms.