Premium
Shear force imaging of DNA in a near‐field scanning optical microscope (NSOM)
Author(s) -
Kirsch A. K.,
Meyer C. K.,
Jovin T. M.
Publication year - 1997
Publication title -
journal of microscopy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.569
H-Index - 111
eISSN - 1365-2818
pISSN - 0022-2720
DOI - 10.1046/j.1365-2818.1997.d01-634.x
Subject(s) - near field scanning optical microscope , optics , signal (programming language) , scanning electron microscope , materials science , optical microscope , microscope , photodiode , laser , physics , computer science , programming language
A near‐field scanning optical module has been constructed as an accessory for a Nanoscope IIIa commercial scanning probe microscope. Distance feedback and topographic registration are accomplished with an uncoated optical fibre scanning tip by implementation of the shear force technique. The tip is driven by a piezoelectric actuator at a resonance frequency of 8–80 kHz. A laser diode beam is scattered by the tip and detected by a split photodiode, with lock‐in detection of the difference signal. The amplitude ( r ) and phase (τ) responses were characterized as a function of the calibrated tip–sample separation. Using an r cos τ feedback signal, imaging of pUC18 relaxed circular plasmid DNA spread on mica precoated with cetylpyridinium chloride was achieved. The apparent width (28 ± 5 nm) was approximately four times that achieved by scanning force measurements with the same instrument; the apparent height of the DNA (0.6 ± 0.3 nm) was similar with the two techniques. These results demonstrate the applicability of the shear force signal for imaging biological macromolecules according to topography and in conjunction with the optical signals of a near‐field scanning optical microscope (NSOM).